
Theor Chim Acta (1989) 76:247-268 
Theoretica 
Chimica Acta 
�9 Springer-Verlag 1989 

Subduction of coset representations 
An application to enumeration of chemical structures 

Shinsaku Fujita 
Research Laboratories, Ashigara, Fuji Photo Film Co., Ltd., Minami-Ashigara, 
Kanagawa 250-01, Japan 

(Received October 11, 1988; revised March 10,1989/Accepted June 3, 1989) 

Summary. Enumerations of compounds based on a parent skeleton with and 
without the influence of obligatory minimum valency (OMV) are reported. 
The effect of the OMV is formulated by assigning different weights to the 
respective orbits of the parent skeleton. This type of enumeration requires 
introduction of several new concepts that are derived from the subduction of 
coset representations, e.g., a unit subduced cycle index, a subduced cycle 
index and the number of suborbits. 
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1. Introduction 

Enumeration of compounds in chemistry is one of the most important fields to 
which P61ya's theorem [1] has been applied. Ruch et al. [2] and later Brocas [3] 
have proved the concept of double coset to be very convenient for such 
compound-counting problems. More recently, H/isselbarth [4] has developed an 
important method in this field. This is based on the concept of "table of marks" 
that goes back to Burnside [5]. Mead [6] has discussed the relationship between 
these methods by using common problems as examples. 

In previous papers [7] we have reported the counting of organic reactions. 
The enumeration is based on the manipulation of reaction graphs that are 
subgraphs of imaginary transition structures. A more specific enumeration has 
also been accomplished by counting reaction-center graphs. In this enumeration 
we encountered a problem concerned with obligatory minimum valency (OMV) 
as discussed below. We have solved the problem by using two or more different 
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weights that are assigned to the respective orbits of a domain [8]. Although we 
have restricted ourselves to the case of organic reactions, our results are 
applicable to the enumeration of chemical structures under the influence of the 
OMV. A remaining problem is the counting of chemical structures with a given 
symmetry as well as a given weight, not only in the reaction counting but also in 
the compound counting. 

The present paper deals with the remaining problem, which requires a more 
general approach than H/isselbarth's one in order to meet the OMV restriction. 
For this purpose, we clarify the usefulness of subduced representations of a 
transitive coset representation and of their further reduction into transitive 
permutation ones. This method provides novel concepts such as a unit subduced 
cycle index and a subduced cycle index, which are versatile guides for solving 
enumeration problems. 

2. A parent skeleton characterized by a permutation representation 
and its equivalent positions specified by eoset representations 

A chemical compound can be considered to be a derivative of a given skeleton 
which has a skeletal symmetry. The skeleton has several sets (orbits) of equiva- 
lent positions. Each orbit is characterized by an obligatory minimum valency. 
For example, a twistane skeleton (1) has/)2 symmetry, which creates three orbits 
that have different OMVs. Each bridgehead position of the orbit marked with a 
solid circle has an OMV of 3 and can take C and N from a set of C, N, and O. 
The other orbits (bridge positions) permit the substitution of all the three atoms 
because of their OMV of 2. The OMV thus affects the counting of organic 
structures. The adamantane skeleton (2) has two orbits, one with OMV = 3 and 
the other with OMV = 2. Hence, substitution patterns on 2 should be restricted 
by the OMVs. 

As a result of the above discussion, our question is formulated as follows: what 
is the number of compounds, with a given set of substituents (atoms or ligands), 
on a given skeleton with a specified subsymmetry of the skeleton under the 
restricting conditions of OMV? 

5 

5 6 6 

9 10 

1 2 

The above discussion shows that our first object is the classification of substitu- 
tion positions into equivalence classes. This is formulated to obtain the number 



Subduction of coset representations 249 

of orbits for a given set of positions and to assign a transitive permutation 
representation (i.e., a coset representation) to each of the orbits. 

A permutation representation (PR) of a finite group G is produced when the 
group G acts on a finite set A = {61, 62 . . . .  ,6141}. In a chemical sense, the set A 
is regarded as containing all the positions of a given skeleton, the symmetry of 
which is represented by the point group G. The PR (Pc) is a set of permutations 
(Pg) on A, each of which is associated with an element g e G so that Pc and G 
are homomorphic. That is 

PgPg,=Pgg, forany g, g' eG.  (1) 

Let H be a subgroup of G. The set of (left) cosets of H in G provides a partition 
of G. That is, 

G = Hg 1 q- I'Ig 2 + " "  d- Ug,n, (2) 

where gl = I (identity) and gi ~ G. A set of {g~, g2,. � 9  gm} is called a transversal 
(i.e., a system of representatives). Then we consider the set of the cosets: 

(3) {Hgl, Hg2, �9 �9 �9 Hgm }. 

For any g ~ G, the set of permutations of degree m: 

Hgl, Hg2, �9 . . ,  Hgm 
G(/H)g = \Hglg ,  HgEg, . . . , Hgmg,]' (4) 

constructs a permutation representation of G, which is called a coset representa- 
tion (CR) of G by H and notified as G(/H). The degree of G(/H) is m = IGI/IHI 
where IGI is the number of elements in G. Obviously, the coset representation 
G(/H) is transitive and, in other words, has one orbit. When H and H '  are 
conjugate subgroups of G, the corresponding coset representations G(/H) and 
G(/H')  are equivalent. 

A stabilizer G<,,> is defined as a subgroup of G which fixes one (6i) of the 
elements of A. If  Pc is a transitive PR on A, Pc of degree IAI is identical to the 
coset representation G(/G<~i> ) that is based on an appropriate stabilizer G<~,>. 
Since two stabilizers G<~,> and G<,j> are conjugate, the corresponding CRs 
G(/G<~>) and G(/G<,j>) are equivalent. The following theorems have already 
been proven in Burnside's excellent book [6]. 

Theorem 1. Suppose that the number of subgroups in a finite group G is s (where 
a set of  conjugate subgroups should be counted one time). We select a complete set: 

G1, G2 . . . . .  

in an ascending order of their orders, i.e. 

IG I<.IG=I<.'" IGsl, 
wherein G 1 = identity and Gs = G. The set of  the corresponding CRs: G(/Gi) 
(i = 1, 2 . . . . .  s) is the complete set of  different transitive representations of G. [] 

Obviously, G(/Gt) is the regular representation and G(/G,) is an identity 
representation. 
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Theorem 2. Any permutation representation Pc of  a finite group G acting on A can 
be reduced into transitive CRs in accord with the following equation: 

Pc = L ~ (5) 
i = l  

wherein the multiplicity ~i is a non-negative integer. The multiplicities are obtained 
by using a table of  marks: 

#j= ~ ~im) 0 ( j = l , E , . . . , s ) ,  (6) 
i = l  

where I~ i is the mark (the number of  fixed points) of  Gj in Pc. The symbol m) i) 
denotes the mark of  Gj in G(/Gi). 

For  the present purpose, transitive coset representations (CRs) are as impor- 
tant as their multiplicities. This is in contrast to the previous H~isselbarth's 
method [4] which pays no attention to the concrete forms of  the CRs. Tables 1 
to l0 collect several examples of  them, which will be used in the discussion 
below. The odd-numbered tables contain the symmetry operations of  each point 
group and the products of  cycles of  the corresponding CRs. The even-numbered 
ones are tables of  marks which contain all ms(. ~ 

Since P c  is a permutation representation of  G acting on A, the representation 
can be reduced to a sum of  CRs in the light of Eq. (5). This action provides a 

Table 1. CRs of (72 Table 2. Mark table of (72 

G(/c1) G(/G) c, c2 

I (1)(2) (1) C2(/C 0 2 0 
C2 (1 2) (1) C2(/C2) 1 1 

Table 3. CRs of C a Table 4. Mark table of (73 

C3(/Cl) C3(/C3) Cl C 3 

I (1)(2)(3) (1) C3(/C,) 3 0 
C 3 (1 2 3) (1) C3(/C3) 1 1 
C 2 (1 3 2) (1) 

Table 5. Coset representation of D 2 

D2(/Cl ) D2(/C2) D2(/C~) D2(/C~) D2(/D2) 

I (1)(2)(3)(4) (1)(2) (1)(2) (1)(2) (1) 
C2(t) (1 2)(3 4) (1)(2) (1 2) (1 2) (1) 
(72(2) (1 2)(3 4) (1)(2) (1 2) (1 2) (1) 
C2(2) (1 3)(24) (1 2) (1)(2) (1 2) (1) 
(72(3) (1 4)(2 3) (1 2) (1 2) (1)(2) (1) 
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Table 6. Mark table of D2 

c~ c2 c~ c~ 92 

D2(/CI) 4 0 0 0 0 
/)2(/C2) 2 2 0 0 0 
D2(/C~) 2 0 2 0 0 
D2(/C~) 2 0 0 2 0 
/)2(/D2) 1 1 1 1 1 

Table 8. Mark table of 1)3 

C1 C2 C3 O3 

/)3(/C1) 6 0 0 0 
1)3(/(7,2) 3 1 0 0 
D3(//)3) 2 0 2 0 
D3(/D3) 1 1 1 1 

Table 7. Coset representations of D 3 

/)3 (/Cl) /)3 (/C2) /~3(/C3) /)3(/03) 

I (1)(2)(3)(4)(5)(6) (1)(2)(3) (1)(2) (1) 
C3 (123)(456) (123) (1)(2) (1) 
C 2 (132)(465) (132) (1)(2) (1) 
C2o ~ (14)(26)(35) (1)(23) (12) (1) 
C2(2) (15)(24)(36) (12)(3) (12) (1) 
C2(3) (16)(25)(34) (13)(2) (12) (1) 

Table 9. Coset representation of T 

r T(IC~) T(IC2) T(C3) T(I/)2) T(IT) 

I (1)(2)(3)(4)(5)(6) (1)(2)(3)(4)(5)(6) (1)(2)(3)(4) (1)(2)(3) (1) 
(7)(8)(9)(10)(11)(12) 

C2(,) (12)(34)(56)(78) (1)(2)(34)(56) (12)(34) (1)(2)(3) (I) 
(910)(1112) 

C2(2) (13)(2 4)(5 7)(6 8) (12)(34)(5)(6) (13)(24) (1)(2)(3) (1) 
(911)(1012) 

C2(3) (14)(23)(58)(67) (12)(3)(4)(56) (14)(23) (1)(2)(3) (1) 
(9 12)(1011) 

C3O ) (159)(2811) (135)(246) (1)(243) (123) (1) 
(3612)(4710) 

C3(3) (1611)(279) (145)(236) (123)(4) (123) (1) 
(3510)(4812) 

C3(2) (1712)(2610) (146)(235) (134)(2) (123) (1) 
(389)(4511) 

C3(4) (1810)(2512) (136)(245) (142)(3) (123) (1) 
(3711)(469) 

C2o) ( 195)(2118) ( 153)(264) ( 1)(234) ( 132) (1) 
(3126)(4107) 

C2(4) (1 l08)(2125) (163)(254) (124)(3) (132) (1) 
(3117)(496) 

C2(2) (1116)(297) (154)(263) (132)(4) (132) (1) 
(3105)(4128) 

C32(3) (1127)(2106) (164)(253) (143)(2) (132) (1) 
(398)(4115) 
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Table 10. Mark table of T 

C 1 C 2 C 3 D 2 T 

T(/Cl) 12 0 0 0 0 
T(/C2) 6 2 0 0 0 
T(/C3) 4 0 1 0 0 
T(/D2) 3 3 0 3 0 
T(I~3 1 1 1 1 1 

partition of the elements of d into a set of orbits so that a transitive G(/Gi) acts 
on each of the ~; orbits: 

A a , d a , . . . , d , = ,  ( i = 1 , 2  . . . .  ,s). (7) 

Chemically speaking, each orbit (A;=) represents a set of equivalent positions. The 
symmetry properties of the set are induced by G and are controlled by G(/G~). 
Obviously the total number of such orbits is 

(~i" 
i = l  

The mark & of Gj in any permutation group Pc is the number of fixed points. 
This is easily available from the explicit form of Pc or if we apply the symmetry 
operations of Gj to the parent skeleton. The following examples illustrate the 
procedure of decomposition into transitive representations to generate a set of 
orbits. 

Example 1:D2 skeleton of  twistane (1) 

The number of (&) of fixed points are obtained by a geometrical examination of 
1. Equation (6) then gives 

(10 0 0 2 O) =({~Cl 0~c2 ~c~ {~c~ (~D 2) 

which produces 

=cl = 2, 

Hence, 

2 0 0  
0 2 0  
0 0 2  
1 1 1 

~c2=0, ~c~=O, OCc~=l, and~a==O. 

Po= = 2D2(/C1) + D2(/C'~). 

The CRs on the right-hand side are shown in Table 5. This decomposition 
corresponds to a partition into three orbits: 

A, ,={1 2 3 4}, A2 ,={5  6}, A,2={7 8 9 10}, 

on which D2(/CI), D2(/C'~ ), and D2(/Cl) respectively act. This partition is 
identical to that obtained by the direct inspection of the skeleton (1). For 
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example, when we apply any symmetry operation of D 2 to the orbit (A 11), we can 
obtain the corresponding permutation of the four elements (positions) which 
emerge at the D2(/C1) column of Table 5. 

Example 2: The T part of the adamantane skeleton (2) 

The marks of a subgroup in Pr are obtained by counting fixed points on all the 
symmetry operations of the respective subgroup. A detailed description of the 
operations of the T point group has appeared elsewhere [9]. The values of marks 
are put into Eq. (5) giving the following representation. 

(10 2 1 0 0)=(~cl ~c2 ~c3 ~to2 ~r) 12 0 0 0 0 7 
6 2 0 0 0  
4 0 1 0  . 
3 3 0 3 
1 1 1 1 

That is ec~ = 0, ec2 = 1, ec3 = 1, eD2 = 0 and er  = 0, which indicates 

= r ( / G )  + r ( / G ) .  

The concrete forms of these transitive CRs are collected in Table 9. The equation 
is in agreement with the fact that the vertices 1 to 10 are divided into two orbits, 
i.e. A1 = {1, 2, 3, 4} and A2 = {5, 6, 7, 8, 9, 10}, which are associated with T(/C3) 
and T(/C2), respectively. 

3. Subduced representations o f  a eoset representation 

As a basis for solving enumeration problems, we introduce subductions of coset 
representations. This section deals with a mathematical formulation of the topic 
as well as its chemical meanings. The set of the coset representations of a given 
group G is determined only by G by Theorem 1. This means that the properties 
of G(/Gi) (i = 1, 2 . . . . .  s) can be preexamined irrespective of the G-sets. In this 
section, we discuss the subduced representations of them. 

Let (7,- and Gj be any subgroups of G that are selected as in Theorem 1. The 
representation G(/Gi) denotes the coset representation (CR) of G by Gi. Then we 
define a subduced representation (SR) G(/Gi)~Gj as the subgroup of G(/Gi) 
that contains only the elements associated with the elements of Gj. The SR 
G(/Gi) J, Gj can be regarded as a permutation representation of Gj and can be 
considered to act on each of the orbits Ai~ (~ = 1, 2 . . . . .  ~,.) on which the group 
G(/Gi) also acts. Although the action of G(/G~) on the orbit A;~ is transitive, that 
of the SR G(/Gi) ~ Gj is intransitive. Hence, the orbit A~ is subdivided by the 
action of G(/G~) ~ Gj (Fig. 1). This subdivision can also be accomplished by 
means of Eqs. (5) and (6). Thus, we arrive at 

Corollary 2.1. Let G(/Gi) be a coset representation of G by Gi. Let G(/Gi) ~ Gj be 
a subduced representation of G(/Gi) by Gj <~ G. The SR G(/Gi) ~ Gj can be reduced 
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A . . . . .  O 

1" 
An ..... O(/Gi) 

Fig. 1. Orbits and suborbits generated during the action 
by G and the subsequent subduction by 

by the following equation: 

G(/G~)~Gj= ~ fl~Gj(/Hk) f o r i = l , 2 , . . . , s a n d j = l , 2  . . . .  ,s, (8) 
k = l  

where Hk is a subgroup of Gj and Gj(/Hk) is the CR of Gj by Hk. The 
multiplicities, the fl~'s, are non-negative integers and the symbol v is the number 
of Hk conjugate classes. The coefficients are obtained from the following equation. 

vt= ~ fl~m~ k) f o r l = l , 2 , . . . , v ,  (9) 
k = l  

where vt is the mark of H t in G(/G~) ~ Gj. [] 

The subgroup Hk and the number v depend upon Gj; however, for simplicity of 
the notation, this dependence is not expressed explicitly. 

Since the degree of ~( /Hk) i s  djk = I [/IHkl, each subdivided orbit, 

A~p (fl = 1,2 . . . . .  fl~), 

has a length of djk. Then we assign a variable o~) to A ~ .  The superscript (~) ~ djk 

indicates the dependence on the corresponding orbit, d;~ (~ = 1, 2 . . . . .  or ~),  
since the ~i orbits can take different sets of substituents. Note that all the 
suborbits (A~) take the same set of substituents as that of the parent orbit. 
These requisites are introduced to meet the OMV restriction described in Sect. 2. 
Since the multiplicity of this suborbit is fl~, we define a unit subduced cycle index 
(USCI) as follows: 

Definitinn 1. A unit subduced cycle index (USCI): 

Z(G(/Gi) ~,Gj; o(~)~ [-[ t~(.)~B~ (10) O djk] = ~,~ djk] , 
k = l  

for each action of G(/Gi) ~. Gj on Ai~. Another useful constant is the number of 
suborbits (NSO): 

flij= ~,, fl~. (11) 
k = l  

It should be emphasized that the USCI and the NSO do not depend upon a 
particular G-set but only on the subduction by Eqs. (8) and (9). Hence, they are 
commonly useful for any problem. The full tabulation of USCIs and flo.'s for 
every point group would be a valuable tool for enumeration problems. Tables 11 
to 14 collect several examples of them, where the NSOs are in the parentheses. 
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Table 11. Z(G(/G,) ~,Gj; s) and 
/~o for C2 

i \  j C~ C2 

C2(/Ci) s~ s2 
(2) (I) 

G ( / G )  3~ s4 
(1) (1) 

Table 12. Z(G(/Gi),[Gj;s) and/3o for/)2 

i \  j C1 C2 C'z C~ D 2 

o~( /G)  s 2 s~ s~ s ~, s, 
(4) (2) (2) (2) (1) 

02(/C9 s~ s~ s2 s~ s2 
(2) (2) (1) (1) (1) 

D 2 ( / C  9 s 2 s 2 s~ s 2 s 2 
(2) (1) (2) (1) (1) 

D2(/C~) s~ s~ s~ s~ s2 
(2) (1) (1) (2) (1) 

D 2 ( / D 2 )  S 1 S 1 S 1 S 1 31 

(1) (1) (1) (1) (1) 

Table 13. Z(G/(Gi) J, Gj; s) and/~o for D 3 Table 14. Z(G(/Gi) $ Gj; s) and/~o for T 

i \  j C t C 2 C 3 D 3 i \  j C t C 2 C a D 2 T 

D3( /C1  ) s 6 $32 s 2 s 6 T ( / C  1 ) 812 s 6 s 4 834 s12 

(6) (3) (2) (1) (12) (6) (4) (3) (1) 
D3(/C2) s 3 sis2 s3 s~ T(/C2) s 6 2 2 s,32 ~ 32 ~6 

(3) (2) (1) (1) (6) (4) (2) (3) (I) 
D3(/C3) s 2 x2 s~ s2 T(/C3) S 4 S 2 SIS  3 S 4 8 4 

(2) (1) (2) (1) (4) (2) (2) (1) (1) 
/~3(/ /~3)  SI SI Sl S1 r ( / / ~ 2 )  s 3 Sl 3 s 3 $ 3 3 3 

(1) (1) (1) (1) (3) (3) (1) (3) (1) 
T ( / T )  s I s 1 s t s I 31 

(1) (1) (1) (1) (1) 

Example  3 

In Example 2, we have already found the two orbits of  the adamantane skeleton 
(2), i.e., z~ 1 = { 1 ,  2 ,  3, 4} and A2 = {5, 6, 7, 8, 9, 10}, on which T( /C3)  and T(/C2),  
respectively, act in a transitive fashion. Subductions to subsymmetries provide 
the subdivision of the orbits, A1 and A2, into the corresponding suborbits. Table 
14 assigns unit subduced cycle indices to the suborbits. The total profile of the 
subdivision is illustrated in Fig. 2, which also contains USCIs assigned to the 
respective orbits on which the corresponding CRs act. Note that the degree of 
the CR is equal to the length of the suborbit. Figure 2 gives an insight into the 
meaning of  the USCI (Eq. 10). For example, the orbit AI(IA1] = 4 )  is divided 
during the operation (T / (C3)  $ C2) into two suborbits of length 2. This fact is in 
agreement with the assigned USCI (s]). 

4. Orbits of  configurations 

For the formulation of  the restriction by the OMVs described above, we 
introduce a set of  weights for each orbit. Let A be a domain which consists of IA I 
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A={1 2 3 4 5 6 7 8 9 10} " . . T  

I 
I I 

~ ={1 2 3 4}.-.r(/~) A~={s 6 7 8 9 10} .-.r(/r 

+c~ 
- -  {1} {2} {3} {4} s; 

+c2 
{1 2} {3 4} s~ 

- -  (1} {2 3 4} s,s 3 

- -  ( 1 2 3 4 }  s4 

5 

3 ' - . . . . / / -  L 
10 

{5} (6} {7} {8} {9} {10} s~ 

~c~ 
- -  {5} {6 8} {7 9} (10} s , s  22  2 

{s 69}  (r lo 8} s~ 

- -  {s lo} (8-8} (7 9} sg 

ST ST 
- -  {1 2 3 4} s4 - -  {5 6 7 8 9 10} s 6 

S. Fujita 

Fig. 2. Orbits and suborbits of  the adamantane skeleton (2) 

elements called positions: 

A = {~1, 62 . . . . .  ~1~1}" 

Let G (order IGI) act on the domain (A) to provide a permutation representation 
PG on A. Suppose that the action of G provides a partition into orbits: 

Ai~ f o r i = l , 2 , . . . , s a n d ~ = l , 2 , . . . , ~ i ,  

where the number of orbits is 

i = l  

Let X be a codomain that contains IXI elements called figures. The mathemat- 
ical term "figure" can be translated into a chemical term "substituent", "ligand", 
or atom , 

x = ( x , ,  x 2  . . . . .  

Suppose that f is a function (configuration) from A to X: 

f :A  -+ X, (12) 

in which the mode of the mapping is restricted in light of weights. Equation (12) 
corresponds to a chemical procedure in which the positions of A (or of a given 
skeleton) are replaced by appropriate substituents selected from X. Hence, each 
of the functions (configurations) derived from Eq. (12) represents an appropriate 
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compound in a chemical sense. For the purpose of considering OMVs, different 
sets of  the weights are assigned to the respective orbits, i.e., 

W~=(Xr) for Ai~ (r = 1, 2 , . . . ,  IXl). (13) 

Then we define a weight of  the function W ( f )  as follows. 

W ( f ) = I ~  1-/ 17I wi~(f(6)), (14) 
i = l  ~ = O O E A i ~  

wherein w,~(X,) = 1. Obviously the multiplication over 6 e Ai~ affords a mono- 
mial of a total power of 

djk/Tg. (15/ 
k = l  

In most chemical enumerations, the weight of a function (configuration) repre- 
sented by Eq. (14) can be regarded as the molecular formula of the configura- 
tion. 

A set of  all the functions ( f :  A -> X) is notified as 

F = {fx, f 2 , . . - ,  f ~ , . . . ,  f~ . . . . .  fel}" (16) 

Let f~ and f ,  be two functions belonging to iv. A binary relation between fr and 
f~ is defined as fr "~f,, if the following equation is fulfilled for 3Pg (e  Pc) :  

f~(6) =f~(Pg(6)) for V6 e A. (17) 

The binary relation is an equivalence one, which provides a partition of  F into 
equivalence classes. 

If  this relationship is considered to be a mapping f ,  ~ f r ,  i.e. f~p~-i ~ f r ,  we 
find a permutation: 

_( z,, 
/ . (18) 

The set of  (/-/o) of rcg for Vg e G is a permutation group on F [8]. A significant 
standpoint of P61ya's theorem is the fact that an equivalence class of configura- 
tions with respect to Eq. (17) is an orbit of F which is induced by the action of 
Ha.  This formulation enables us to apply Theorem 2 (Eqs. 5 and 6) to the 
present case. Thus, we arrive at 

Theorem 3. Let a group G act on F via a permutation representation 11 a. The 
multiplicity (At) of each transitive representation G(/G~) in FI o is determined by 
the following equation, 

I1~ = ~ AiG(la,), (19) 
i = l  

wherein Ai is a non-negative integer. The multiplicity A~ constitutes the solution of 
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the system of linear equations, 

pj = ~ Ai mSO f o r j = l , 2  . . . . .  s. (20) 
i = I  

where & is the mark of ~ in 1-1 a. 

Although the marks (the fixed points) in the previous Eqs. (6) and (9) are 
easily traceable because of the concrete nature of positions, the mark & is 
somewhat difficult to understand due to the abstract nature of functions or 
configurations. Equation (19) provides a partition of F by 11a to create the 
corresponding orbits of F. Suppose that one of the orbits is 

Fi = { f{O, r(i) #i)} 
J 2  , " " " , d ~  

(21) 

which is associated with G(/G~). The definition of G(/Ge) indicates that the 
group G(/G~) acts on Fi in a transitive fashion. Since G(/Gi) is a coset 
representation of G by G~, the subgroup Ge is a stablizer on F~ (Theorem 1). 
This fact indicates that there is an appropriate f~)(~Fi) which is a fixed 
configuration with respect to action by G~. In other words, the fixed configura- 
tion f~) has a symmetry of Gi. It is to be noted that f~) is invariant with 
respect to action of G~ but variant with respect to that of G(/Gi). Hence, all 
configurations of F~ have the same symmetry, Gi. As a result, A~ in Eq. (19) 
also indicates the number of different configurations of symmetry G,.. We 
summarize the discussion in the form of 

Corollary 3.1. Let a group G act on F by acting on A. Then the numbers (Ai) of 
configurations of symmetry Gi ~ G constitute the solution of the system of linear 
equations expressed by Eq. (20). 

The next important problem is the evaluation of & of Eq. (20). The mark (&) 
of Gj in Ha is the number of fixed functions (or fixed configurations) of F on 
the action of Gj. In order for an appropriate fo~ (e  F) to be a fixed configura- 
tion with respect to Vg ~ Gj, the following equation is required to hold: 

fO)(Pg(6)) =fo)(6)  (for v3 ~ A and Vg e Gj). (22) 

In other words, f o )  has to be constant on the Gj-orbit of A. Since A is divided 
into orbits Ail, A a . . . . .  A~ i (i = 1, 2 , . . . ,  s) by the action of G and each orbit 
A~ ( ~ = I , 2  . . . .  , ~ )  is subdivided by the action G(/G~).LGj (Fig. 1), the 
number (Bu) of orbits for each A,.~ is given by Eq. (11). 

In order for 3fo) (~ F) to be constant, all positions of each suborbit have 
to take the same figure (or substituent). This means that there are [X~] ways of 
substitution for each suborbit subduced from A,.~, where 

[X/~[ = no. of non-zero wi~(Xr) for each Ai~. 

Since the number of the suborbits from Ai~ is flu in the subdivision by 
G(/Gi) ~, Gj, the term, 
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~t i 

I-I Ixi~l ~ , (23) 
~=0 

is the number of fixed configurations corresponding to A~, where IX,,I = 1. 
Finally, the total number of fixed configurations is obtained by collecting the 
terms (23) through all the subgroups, i.e. 

PJ = (-I f i  [X,~ lau. (24) 
i = 1 ~ = 0  

Equations (20) and (24) lead to 

Corollary 3.2. Let a group G act on F by acting on A. Then the numbers (Ai) of 
orbits with symmetry Gi are obtained by the following equation: 

(-I fi IXi~l #O-~ ~ Aim(i) ( J =  1 ,2  . . . . .  s), 
i=1 ct=O i=1 

(25) 

where the action of G on A is restricted by the weights of Eq. (13) and IXiol = 1. 

Example 4 

We examine two cases in the enumeration of compounds based on the 
adamatane skeleton (2). In order to simplify the problem, we use T symmetry 
rather than Ta for the skeleton. This simplification retains the essential aspects of  
the present procedure. Figure 2 indicates a partition of the vertices of  2, i.e., 
A1 = {1 to 4} on which T(/C3) acts and A2 = {5 to 10} on which T(/C2) acts. 
Suppose that Case 1 adopts a codomain X = {C, O}. Because of  the OMV of 
each orbit, Case 1 permits only C substitution on A1 but C and O substitution 
oh d2. In Case 2, assumed to have a codomain X = {C, N, O}, the orbit A1 can 
take C and N as substitutents and A2 is capable of taking C, N and O. These 
situations can be formulated by the following weights: 

Case I 

and 

wI(C ) ~-X, wI(O ) = 0  for the orbit A~ 

w2(C)  = x, 

Hence, IX, I = 1 and IX2] = 2. 

Case 2 

wl(C) = x ,  wl(N) = y ,  

and 

w2(C) = x, w2(b0 = y, 

Hence, Ix l = 2 and Ix21 = 3 

w 2 ( O  ) = Z fo r  t he  o r b i t  A 2. 

wl(O) = 0  for the orbit ,41 

w 2 ( O  ) ~- Z fo r  t h e  o r b i t  A 2. 
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For  the calculation of  marks, we use the T(/C2) and T(/C3) rows of  Table 14. 
Thus, we find 

Case 1 

Case 2 

p c  I = 2 6 1 4  = 64, Pc2 = 2412 = 16, 

pD2=2311=8 ,  and p r =  2111= 2, 

Pcl = 3624 = 11664, Pc2 = 3422 = 324, 

Po2=  3321=54, a n d p r = 3 1 2 1 = 6 .  

For  Case 1, we find Eq. (20)  as 

(64 16 4 8 2 ) = ( A c ~  Ac2 Ac3 Ao 2 A t )  

which affords 

Case 1 

Acz = 2, 

Similarly, case 2 

Acl = 890, 

PC3 = 2212 = 4, 

pc 3 = 3222 = 36, 

12000 ] 
6 2 0 0  
4 0 1 0 , 
3 3 0 3 
1 1 1 1 

Ac2 = 4, A c 3  = 2, AD2 = 2, and A r = 2. 

Ac2 = 135, Ac3 = 30, AD2 = 16, and Ar = 6. 

Figure 3 illustrates the result of  Case 1. It  should be noted that, since we have 
chosen T symmetry rather than Td, each of  the isomers has a lower symmetry 
than they would under Td symmetry. 

Example 5 

Twistane (1) has / )2  symmetry and affords three orbits, i.e., A 1 = { 1, 2, 3, 4} on 
which D2(/C1) acts; A2 = {5, 6} on which D2(/C'~); and A3 = {7, 8, 9, 10} on 
which D2(/Cl) acts (see Example 1). Let us select a codomain X =  {C, N, O}. 
The OMVs of  the orbits afford a set of  weights as follows. 

w~(C) = x ,  wl(N) = y ,  wl(O) = 0  for the orbit A1, 

w2(C) = x, w2(N) = y, w2(O) = z for the orbit A2, 

and 

w3(C) = x ,  w3(N) = y ,  w3(O ) = z  for the orbit A 3. 

Hence, [Xl[= 2, IX2I= 3, and IX31= 3. 
By using the values collected in the D2(/C1) and D2(/C~) rows of  Table 12, we 
obtain the marks for Eq. (24): 

Pc1 = 243432 = 11664, Pc2 = 223231 = 108, Pc'2 = 223231 = 108, 

Pc~ = 223232 = 324, and Po2 = 213131 = 18, 
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Z 2 

Z 3 

Z '  

Z ~ 

Z~ 

C~ C~ C~ O~ T 
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Fig. 3. Compounds derived from the adarnantane skeleton (2). See Examples 4 and 6. The solid circle 
denotes an oxygen atom. Unmarked vertices are replaced by carbon atoms. Note that we take 
account of the T part only. Hence, the column of C2 symmetry contains molecules that should strictly 
be classified under C2v symmetry, and so on 

which are in tu rn  in t roduced to Eq. (24) to afford 

(11664 108 108 324 18) 

=(Acl Ac2 Ac" 2 Ac~ Ao 2)  000 l 
2 0 0  
0 2 0  
0 0 2  
1 1 1 

Hence, we arrive at 

Ac~ = 2790, Ac2=45, Ac'2=45, Ac~ =153, a n d A D 2 = 1 8 .  

These values are verified by a more intuit ive t reatment .  In  order to realize the 
D2 symmetry,  every orbit  in 1 must  be filled with atoms of the same kind. Hence, 
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the orbit (A1 marked by the solid circle) takes four atoms of C or of N. Thereby, 
there appear two cases (i.e., Ca and N4). Since A2 (solid square) can take two 
atoms of C, N, or O, there are three cases (i.e., C2, N2, and 02). Similarly, there 
are three cases in the occupation of the orbit (A3 (solid triangle)). Therefore, the 
combinatorial examination produces 2 x 3 x 3 ( = 18) cases, which is equal to the 
number (Ao2) obtained above. 

5. Orbits of configurations with a given symmetry and with a given weight 

In the previous sections, we have answered the question: what is the number of 
compounds of a subsymmetry based on a skeleton of a given symmetry under the 
OMV restriction? In the previous paper, we have also enumerated compounds of 
a given weight under the same restriction [8]. A further question is then: what is 
the number of compounds with a given subsymmetry as well as a given weight 
under the OMV restriction? 

Suppose that the weight of a function is given by Eq. (14). In terms of the 
equivalence relation (Eq. 17), two equivalent functions are easily proved to 
have an equal weight [8]�9 It should be noted that the converse is not always true. 
Let F (~ be a set of functions ( f :  A ~ X) all of which have the same weight 
Wo(f) .  

F(o) = ~ ~(o) ~J1 , f~2 ~ r ~ (26) 
�9 �9 �9 , J i F O [ J "  

Suppose that Pg ~ Pa acts on f~o) s F {~ by Eq. (17). The resulting f~o) is also a 
member of F ~~ by definition. Hence we obtain a permutation, 

(f]O)p~;) r 1D--I\ 
~(o) = " " ' J l F ~  I 
"'g \ f , r I J F 0 I 

( j ~ l O ) . . .  r \ 
J[  FO] I (27) 

= 0) \ f~o) p. ~l~olP., ] 
A (o) The set --a of 2~ o) for Vg ~ G can be proved to be a permutation group on F (~ 

[8]. This formulation permits us to apply the general theorem (Eqs. 5 and 6) to 
this case. 

Theorem 4. 

and 

A(O) ~ AoiG(/Gi) G 
i = 1  

(28) 

Poj = ~ AoimJ 0 (29) 
i = 1  

�9 (o) The subscript or superscript 0 is concerned with where Poj is the mark of Gj in A 6 �9 
all different values of weights Wo. The number of  different weights is denoted I01. 
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Equation (29) 

~ ' P l l  �9 �9 �9 

P21  �9 " " 

Pol �9 �9 �9 Poj 

Pl011 �9 �9 �9 PlolJ 

�9 �9 �9 P o s  

�9 �9 �9 Plol ,  

is equivalent to the following matrix equation 

P l j  " ' "  P l s  ( ' A l l  " � 9 1 4 9  ~41s "~ f / ~  ~l)  

" ' "  = UI0t,[A '  101 A ] L m(a~)lm~2) 

�9 ..  m~O] 
�9 ..  m~ 2)] 
�9 .. (3o) 
�9 .. m(fl)J 

We call (Poj) a fixed-point (FP) matrix and (Aoi) an isomer-counting matrix�9 The 
third matrix of Eq. (30) is the matrix representation of a table of marks�9 
Obviously, the following equations hold: 

Ai = ~ A o ~ ,  (31) 
0 

pj = Y, p0j. (32) 
0 

The next problem is the evaluation of Poj. We shall discuss a column of the mark 
matrix (Poj). The series of elements: 

Pu, P2j, �9 �9 �9 Poj . . . .  , and PlolJ 

of the j t h  column is concerned with configurations of symmetry Gj. Suppose that 
Fj is a set of such configurations of symmetry Gj. 

A subduced representation G ( / G i ) ~ G j  acts on Ai~ (~ = 1 , 2 , . . .  ,~i) to 
produce the subdivision of Ai~ into ~ suborbits of length djk, each of which 
satisfies Eqs. (8) and (9)�9 In order for f(J) ~ Fj to be constant, each suborbit of 
length djk has to take the same figure (or ligand), i.e., djkX1, or d j k X 2 , . . . ,  or 
d i X i x  I. Hence, for each suborbit of Ai~, the corresponding generating function 
(figure inventory) is obtained, 

Ixl 
W~(Xr)dJ k. (33) 

r = l  

Since this equation holds for all suborbits of  A;~, the multiplication over all the 
suborbits of the orbit Ai~ (i.e., over all subgroups Hk) affords a generating 
function, 

k = l  r 1 

where in /~  is concerned with Hk. Alternatively Eq. (34) follows from Eqs. (33) 
and (10). Note that Eq. (34) is concerned with G(/G~)  $ Gj (or with A~). Since 
Eq. (34) is true for all orbits of A, the multiplication over all ~ and i provides a 
generating function, 

w,~(Xr)aJ k , ( j  = 1, 2 , . . . ,  s), (35) 
i = 1  k = l  r 1 

w h e r e / ~  = 0 if ~,. = 0. 
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Expansion of  Eq. (35) leads to a polynomial that contains monomials 
expressed by Eq. (14). Since the multiplication over k in Eq. (35) contains 
monomials of  total powers (djlfl~ + d/2B~ + ' "  "+  djkflg), we arrive at a generat- 
ing function giving Poj as the coefficients of  Wo, 

= ( j  = 1, 2 , . . . , s ) ,  (36) 
0 i = l ~ = 0 k = l  r 1 

where fig = 0 if ~,. = 0. 
To formulate the above discussion, we define a subduced cycle index Z(Gj; 

s(a~) for Gj ~< G by using USCIs (Eq. 10). 

Definition 3 (subduced cycle index). 

z(aj; s+,= fi a .  s+ ,  + j ,  ajkJ aM 
i =  1 ~ t = O  

= IeI f i  ~ (s(a:~)),~ ( j : l , 2  . . . . .  s), (37) 
i = l e t = O k = l  

where fl~ = 0 if ~i = 0. The superscript (~) is associated with the corresponding 
orbit A;=. 

The subduced cycle index can be obtained from a table of  USCIs that has 
been preestimated by examining the reducible subduced representations of  a 
transitive coset representation (Sect. 3). We summarize the above results ex- 
pressed in Eq. (36) in the form of  the following lemma. 

Lemma 1. I f  Gj <~ G acts on A under the restriction of  weights (Eq. 14), the 
generating function for marks Poj with a weight Wo is given by the following 
generating function: 

poj W o  = Z ( G j ;  o(~)~ . .  oajk, (J  = 1, 2, . ,  s), (38) 
0 

where the right-hand side is replaced by 

IXl 
s(~) ajk = ~ w,~(Xr) d~k (39) 

r = l  

Equation (39) is a kind of  generating function, which we call a figure inventory. The 
following example illustrates an application of  Lemma 1. 

Example 6 

Let us reexamine Case 1 of  Example 4. The use of  the following weights, 

w~(C) = 1, wl(O) = 0  for the orbit AI 

and 

w2(C ) = 1, w2(O) = z for the orbit A2, 
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in Eq. (39) provides two inventories, i.e., 

s~ ~) = 1 for the orbit A~ 

and 

s~ 2 ) = l + z  t for the orbi tAz.  

Note that the orbits A1 and A2 correspond to T(/C3) and T(/CJ, respectively. 
Hence, we use the T(/CJ and T(/CJ rows of  Table 14 to find 

where the 

(s'~)o)(sD ~2) = (1 + z) 6 

(s~)")(s~s~) ~2' = (1 + z)~(! + z~) 2 

(s~s3)(~)(s]) ~ = (1 + z~) 2 

($4)(I)(s3) (2) ~--- ( l  "JI- Z2) 3 

( s 4 ) ~  ~2~ = 1 + z 6 

superscripts (1) and (2) denote A 1 

for GI = CI 

for (72=(72 

for G 3 = G  

for G 4 = D2 

for Gs= T, 

and A2, respectively. These 
expressions are the explicit forms of  Eq. (38) for this example. The expansion of  
them yields the columns of  the corresponding FP matrix (Poj). We now obtain 

1 
Z 

2 2 
g 3 

Z 4 

Z 5 

Z 6 

c ,  Q G o~ 
1 1 1 1 
6 2 0 0 

15 3 0 3 
20 4 2 0 
15 3 0 3 
6 2 0 0 
1 1 1 1 

T 
1 
0 
0 = A  
0 
0 
0 
1 

010200000 ] 303111 
which provides the number of  isomers with a given 
weight in the form of  an isomer-counting matrix: 

D1 T 
0 1 
0 0 
1 0 
0 0 
1 0 
0 0 
0 1 

G G G  
1 %  o o 
z 0 I 0 
z 2 I 0 0 

A = z  3 0 2 2 
z 4 I 0 0 
z 5 0 1 0 
z 6 0 0 0 

symmetry as well as a given 

Figure 3 illustrates the results appearing in this matrix. 

7. Spec ia l  cases  

In Sects. 4 to 6, we have taken account of OMVs. There are, however, many 
cases where it is not necessary to consider the OMVs. These cases are formulated 
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here as special cases of the treatment described above. Suppose that all the 
weights given previously by Eq. (13) are defined by the following equations for 
this situation: 

W~(X,)=Xr f o r i = l , 2  . . . .  , s , ~ = l , 2  . . . .  , a ~ , a n d r = l , 2  . . . .  ,Ix[.  (40) 

Then the weight of a function (configuration) is represented by the equation, 

W ( f )  = I-I wi~(f(t~)). (41) 
l E A  

The first object of this section is to obtain a solution when Corollary 3.2 is 
applied to this case. Because all [Xi~ ['s are equal to [X[, the left-hand side of Eq. 
(25) is transformed as follows: 

s 

( I  Ixl = Ix[ '=' 
i = l  

Hence, by using Eq. (25), we end up with the following corollary: 

Corollary 3. Let a group of G act on F by acting on A. Then the number of  Ai of  
orbits with symmetry Gg constitutes the solution of  linear equations, 

s 

IXI ~=1 = ~ Aim~ ~ ( j = 1 , 2  . . . .  ,s). (42) 
i = 1  

This corollary is the counterpart of H~isselbarth's Corollary 1 [4]. However, Eq. 
(42) contains the number of orbits as a concrete power, i.e. 

i = 1  

where ~. is obtained by Eq. (5) and flq is derived from Eq. (11). It should be 
emphasized that the introduction of subduced representations results in the 
present approach being more detailed than H~isselbarth's. 

The second problem of this section is the determination of the number of fixed 
configurations with symmetry Gj as well as a weight Wo without consideration of 
OMV. The left-hand side of Eq. (37) is transformed under the condition of Eqs. 
(39) and (40), 

kO djk ] ~" kO djk.I 
i = 1  o r = O k =  1 i = 1  k = l  ~ t = O  

i = l k = l  

k = l  i = l  

s 

= N (Sd]k)i=l , 
k = l  
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in which the superscript (u) can be omitted, since s~a~ is independent upon A~. 
This provides a new form of subduced cycle index suitable to the special case. 
That is 

Definition 4 (subduced cycle index). 

s 

E ~i~ 
Z'(Gj; sajk)= I~ (sajj  =~ (43) 

k = l  

By the use of the definition, Lemma 1 can be converted into Lemma 2 to meet 
the present requirement. Note that all W~(Xr) = Xr. 

Lemma 2. I f  Gj <<. G acts on A, a generating function for marks Poj with a weight 
I4Io is given by the equation, 

E poj wo = Z'(Gj; %k) (44) 
0 

( j  = 1, 2 , . . . ,  s) 

sa, k = ~ Xa/k. (45) 
r = l  

This lemma is more informative than H/isselbarth's counterpart [4], since the 
former is based on the subduced cycle index. Thus, the power of the cycle index, 

i ~ l  

comes from the subduced representation G(/G~) ~ Gj in the present method. 
Finally, it is worthwhile mentioning the differences between our approach 

and H/isselbarth's one. Figure 1 illustrates an essence of our approach, in which 
the first division of a domain by G and the subsequent subdivision by a subduced 
representation G(/Gi)SGj enable us to realize precise classification of the 
positions of a domain (A). Thus a suborbit A ~p is ascribed to the corresponding 
orbit Ai~, which is in turn determined by the coset representation G(/Gi). Hence, 
we have arrived at the concept of subduced cycle index, which is effective in the 
enumeration under the influence of the obligatory minimum valency (OMV). 

By way of contrast, H/isselbarth's approach considers each subgroup Gj 
( ~< G) acting directly on the domain (A). In other words, it disregards the action 
of the group G on A in the evaluation process of fixed points. As a result, it 
shows less discrimination in its classification of the positions. Hence, it is limited 
to the cases on which the OMV has no effect. 

8. Conclusion 

We have reported the enumeration of compounds with and without the influence 
of obligatory minimum valence (OMV). To solve the problem concerned with 
the restriction by the OMV, different weights are assigned to respective orbits of 
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a parent  skeleton. Several new concepts associated with subduced representat ions 
are the essential parts  o f  the present  work. 
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